RAPID Insights: Real-Time Transient Classification for Roman

Ashish Mahabal on behalf of RAPID Deputy Director, Center for Data Driven Discovery, Caltech Transients from Space, STScl, Baltimore, 13 Mar 2025

Outline

- Brief intro to Roman/RAPID
- Classification needs (of the community)
- Availability of data/methodology/resources
- Ongoing efforts/status

Brief intro to Roman

RAPID

- Roman Alerts Promptly from Image Differencing Project Infrastructure Team
 - PI: Kasliwal. Also see poster by Schuyler Van Dyk
- Tasks (from L2 data):
 - Image tiling,
 - image differencing,
 - rapid detection and classification,
 - and low latency event alerts

Data ... Methodology ... Resources

- Detailed classification and subclassification non-trivial
- Not just single images but also coadds
- NIR MIR

We will use existing data and modern machine learning methods

V.S.S. = volumetric survey speed (normalized to PRIME*) (*PRIME = PRime-focus IR Microlensing Experiment)

Availability of methodology

- CNNs and vision transformers for image-based data
- XGBoost and transformers for time series data (and derived features)
- Foundation Models
- Detection
- Classification
- Clustering
- Transfer learning

Extensive training sets needed

Figure 1: The Transformer - model architecture.

<u>arxiv:1203.5111</u>

Djorgovski, Mahabal et al.

IR Surveys included:

Figure 1. A schematic illustration of the Observable Parameter Space (OPS). All axes of the OPS corresponding to independent measurements are mutually orthogonal. Every astronomical observation, surveys included, carves out a finite hypervolume in this parameter space. *Left:* Principal axes of the OPS, grouped into four domains; representing such high-dimensionality parameter spaces on a 2D paper is difficult. *Right:* A schematic representation of a particular 3D representation of the OPS. Each survey covers some solid angle (Ω), over some wavelength range (λ), and with some dynamical range of fluxes (F). Note that these regions need not have orthogonal, or even planar boundaries.

2MASS UKIRT VISTA WISE SWIRE GLIMPSE

One big difference today is machine learning

Table 1. List of transient models and summary information for each model, including number of events, rest-frame phase T_{rest} (days) with $T_{\text{rest}} = 0$ at peak brightness, and artificial rate multiplier.

- It can be used in many ways
- Transfer learning from brighter samples will do only so much
- Simulating all types for the depth of Roman will be needed
- Right now limited simulations
- Explosive events mostly

https://arxiv.org/abs/2501.05632

	Number of	of generated:	$T_{ m rest}$ range	integer	rate multi-
model	events	SEDs	(days)	type	plier
SN Ia	224,575	67,070,894	-20, +300	10	1
SNIax	165,703	31,978,600	-50, +300	12	1
SNII	694,064	144,330,844	-50, +200	32	1
SNIb	148,722	33,604,658	-50, +200	21	1
SNIc	148,724	33,753,628	-50, +200	26	1
SLSN-I	1,128	398,547	-50, +300	40	1.5
TDE	3,784	583,063	-100, +250	42	10
PISN-H	113	33,694	-50, +200	57	4
PISN-He	112	35,318	-50, +200	58	4
KN	53	12,785	-5, +30	50	100
RanMag	27,884	138,855	-100, +300	99	1
Total	1,386,978	311,802,031	-		-

Easy classification

With Alex Kumar, Caltech

True Label

Easy classification?

But what if this classifier sees something else?

What if the proverbial blindfolded men feel this animal's trunk or ears?

They will think it is an elephant!

Colossal Biosciences would like to bring back extinct animals. They recently took the wooly genes of a wooly mammoth

And ...

And injected them into a mouse to get a wooly mouse!

Don't believe what Saturday Night Live said 3 days back

That the next step is to mate this mouse with an elephant to get wooly mammoths

Because ...

That would be a bit like transfer learning without being adaptive

Colossal Biosciences plan to instead introduce the same genes into elephants

We want exactly that!

Besides the explosive events we want every other kind of known object in our simulated data.

Then we can build multiple one-versus a classifiers like we have done for ZTF

Using multiple classifiers together

STRIDE - Roman's Time Domain Working Group

Monthly meetings - 10 AM PT, first Fridays

Co-chairs: Ashish Mahabal, Tyler Pritchard

Encouraging collaboration across different stakeholders

Solar System, stellar sources, extragalactic events ...

<u>https://outerspace.stsci.edu/display/RSWGS</u> to join the Roman Science Working Groups <u>ROMANTDAWG@MAILLIST.STSCI.EDU</u> to join the mailing list Roman Space Telescope Slack: # wg-tda-stride <u>https://join.slack.com/t/romanspacetelescope/shared_invite/zt-2mcscgq0x-24pp8xJr5gqiq9yBvvutJA</u>

Simple star/Galaxy Classifier

With Heramb Patil, Caltech

Layer (type)	Output Shape	Param #	
conv2d (Conv2D)	(None, 32, 32, 25)	250	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 16, 16, 25)	0	
dropout (Dropout)	(None, 16, 16, 25)	0	
flatten (Flatten)	(None, 6400)	0	
dense (Dense)	(None, 40)	256,040	
dense_1 (Dense)	(None, 2)	82	

Image subtraction without subtraction

- 98% within 2 pixels
- Angle Histogram has normal distribution, no angular bias
- Polar chart confirms lack of bias

Data challenges, Training sets, (citizen science?)

Could duplicate ZARTH for Roman

ZARTH has ambiguous sources that players could help create training sets with

Swipe left or press "Next" for more

NEXT

With D Thummar, D Pindawala, A Arora, T Jegou Du Laz, A Bhavsar, I Kostadinova, N Dharmani, K Gandhi ...

Summary

RAPID is moving along with existing sets Extensive training samples required to avoid false positives

Many modern ML algorithms will provide great results after that